COVID-19重症患者に対する人工呼吸管理 に関する注意点(第2報)

Acute Respiratory Failure due to COVID-19 infection

今. 知っておきたいこと

2020年4月18日

日本COVID-19対策ECMOnet

(日本集中治療医学会・日本救急医学会・日本呼吸療法医学会)

情報は非常に限られている

- ・『ARDS に準じた呼吸管理』という指針で良いのか?
 - 時間とともに変化する可能性が高い
 - タイプ L からタイプ H へ
 - この二つのタイプの違いをまず説明
 - その病態生理の違いから呼吸管理法の違いを紹介
- COVID-19 の病態生理を SARS, MERS から推測
 - 初期の低酸素は肺循環障害?
 - 肺保護換気が必要か?
 - 中枢神経障害が生じる可能性?
- 2020/04/18 現在のまとめ

COVID-19 肺炎:タイプ L

- 初期の症状は全て低い (low) L のが特徴
 - Low elastance
 - 肺内含気は正常でコンプライアンスも正常
 - Low ventilation/perfusion (V/Q) ratio
 - ・ 肺循環障害のために低酸素血症
 - Low lung weight
 - 肺水腫が生じていない
 - Low lung recruitability リクルートする無気肺なし

- ・低酸素性応答で過換気になる(プラス?)
 - 自発呼吸は亢進するが呼吸困難感なし
 - 正常コンプライアンスのため
 - ・ただし、自発呼吸亢進で吸気中の胸腔内圧の低下は進行
- タイプ L を ARDS として換気設定すると肺損傷 (VILI) を生じる
 - ・できる限り低い PEEP と FiO2
 - リクルートメントをしない

移行期::タイプ L からタイプ H へ

- ・炎症の進行と共に肺の血管透過性が亢進し、吸気 胸腔内圧の陰圧も加わり肺水腫へと進行
 - その後. 肺水腫,無気肺のために肺の含気が減少し, 自発呼吸の換気量が減少し,呼吸困難感が生じる
 - ・ 努力呼吸の有無と呼吸困難感の確認が必須
 - ・いつ、気管挿管するのか?が課題?

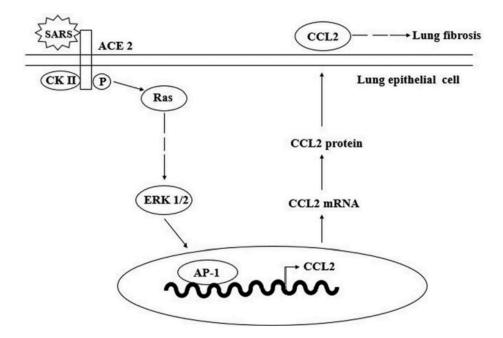
COVID-19 肺炎:タイプ H

- High elastance
 - 肺水腫で含気が減少し、コンプライアンスも減少
- High right-to-left shut
 - ・シャント血流の増加による低酸素血症
- High lung weight
 - ・肺水腫のために重症 ARDS 並みの肺重量
- High lung recruitability
 - 含気の無い肺組織はリクルート可能
- ・この時期の呼吸不全は重症 ARDS

呼吸管理法 タイプ L とタイプ H では異なる

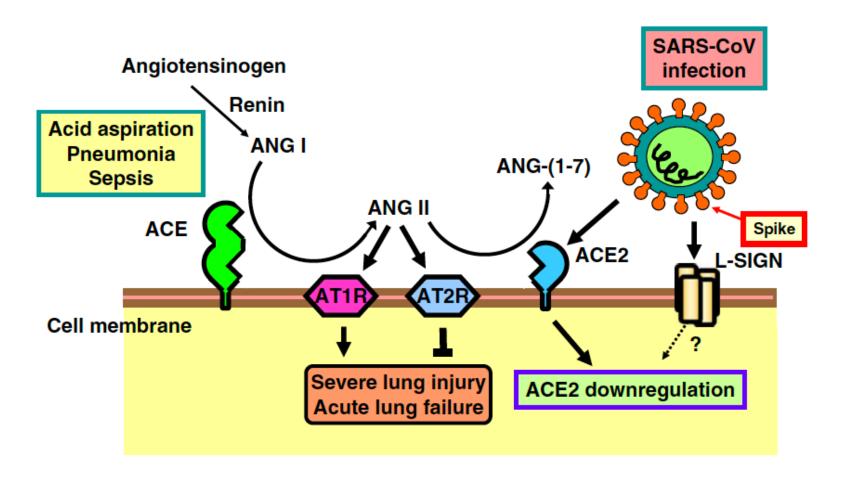
- ・タイプL
 - ・ 低酸素血症は酸素濃度の上昇で対応
 - ・呼吸困難感のあるタイプ L
 - ・非侵襲的換気のオプションがあるが,吸気努力が強い場合には気管挿管・侵襲的換気を考慮
 - 食道内圧測定によって吸気努力を評価することが推奨
 - ・タイプ L からタイプ H への進行は、食道内圧振幅の大きさで判断可能
 - >15 cmH2O では、できるだけ速やかに挿管

・タイプL

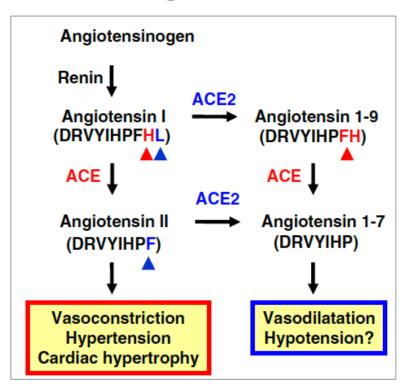

- ・ 挿管後, 深鎮静に
- ・ 高二酸化炭素血症は一回換気量を増やすことで対応
 - コンプライアンスが正常なので
- ・腹臥位換気は救命措置の場合のみ
- PEEP を 8-10 cmH2O へと低下

- ・タイプ H
 - 重症 ARDS としての治療
 - ・より高い PEEP
 - 腹臥位換気
 - ECMO も考慮

- ・以下に紹介するのは、現時点での仮説
 - ・つまり、SARS, MERS での知見に加えて、従来の研究 成果を加味した推測
 - ・ 今後、情報の集積によって、大幅に変わる可能性

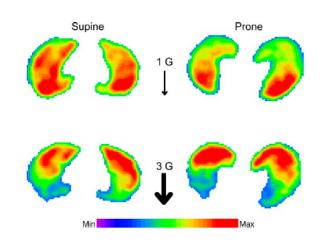

Corona virus と肺

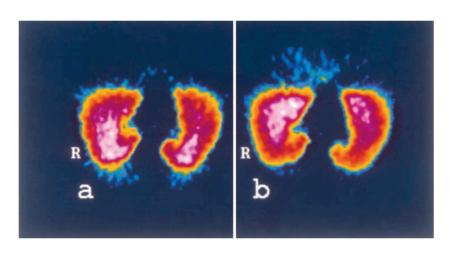
- SARS, MERS での研究
 - Corona virus の感染経路
 - ACE (Angiotensin converting enzyme) 2 receptor


コロナウイルスが細胞内に入るステップ

• COVID-19 も多分,ACE2 receptor を介する

ACE 2 の役割


- ACE: angiotensin I → angiotensin II
 - ・血管収縮, 高血圧・血圧上昇
- ACE2: angiotensin 1-9 or angiotensin 1-7
 - · 血管拡張 · 血圧低下
 - このバランスが必要
 - COVID-19 によって
 - ACE2が抑制
 - ・肺循環障害を生じる?


議論のある部分

- ・タイプL
 - ・ 腹臥位換気はどうなのか?
 - ACE2 の抑制を考えるとありえるか?
 - ・ 血流分布についての研究が必要
 - ・NO の有効性
 - ACE2 の抑制を考えるとあり得るか?
 - ・ 血流分布についての研究が必要

- ・肺内血流分布の調節障害が初期の変化?
 - ・ 重力の影響
 - ・背側の NO の産生抑制
 - この場合、腹臥位換気、NOが有効か?

J Appl Physiol 100:240-248, 2006

Am J Respir Crit Care Med 170:450-455, 2004

ACE2 と臓器保護

- ACE2 ↓ で臓器障害へ

Lung injury Organ Protection

Pulmonary vasoconstriction and remodeling Prevent injury-related shunts

Cardiovascular

Anti-atherosclerosis, anti-ROS

Lower blood pressure

Reduce myocardial hypertrophy

Reverse ventricular remodeling

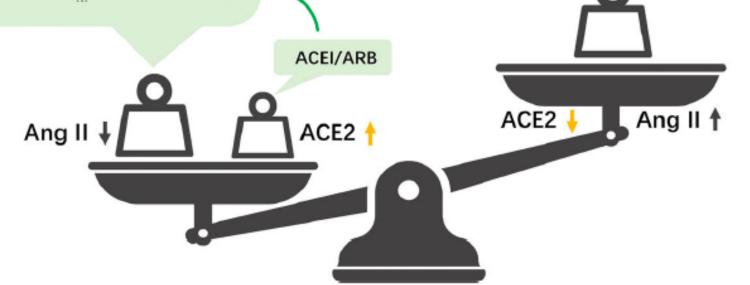
Lung injury Organ injury

Increased pulmonary vascular permeability

Pulmonary edema

ARDS

Cardiovascular


Atherosclerosis, ROS

Hypertension, cardiac hypertrophy

Vascular smooth muscle cell migration

Ventricular remodeling: heart failure

Neurotropism: 神経親和性

- ・SARS と同様に COVID-19 も中枢神経系に侵入?
 - ・嗅覚、味覚を失っている事実から嗅神経が関与?
 - ACE2 の分布が問題?
 - 気道上皮、肺間質、血管内皮細胞、腎細胞・・・
 - ・ 嗅神経から逆行性に拡散: ACE2 とは無関係
 - ・視床,脳幹へ(動物実験レベル)SARS, MERS
 - J Virol. 2008;82:7264-7275, J Infect Dis. 2016;213:712-722

診療上の情報として求めている?

- ・診療初期, つまりタイプ L
 - ・この分類は妥当か?
 - 肺コンプライアンスは正常で呼吸困難感なしか?
 - ・腹臥位換気に反応するか?
 - 嗅覚異常者は過換気か?
- 全国的な症例登録が今! 必要
 - 簡単な情報で(タイプ L と H のフェイズはあるか?)